ERT2

MAPK3
Estruturas disponíveis
PDBPesquisa Human UniProt: PDBe RCSB
Lista de códigos id do PDB

2ZOQ, 4QTB

Identificadores
Nomes alternativosMAPK3, p44MAPK, ERT2, ERK1
IDs externosOMIM: 601795 HomoloGene: 55682 GeneCards: MAPK3
Targeted by Drug
ravoxertinib, ulixertinib[1]
Ontologia genética
Função molecular phosphatase binding
ATP binding
protein kinase activity
MAP kinase activity
transferase activity
phosphotyrosine residue binding
scaffold protein binding
GO:0001948, GO:0016582 ligação a proteínas plasmáticas
nucleotide binding
kinase activity
protein serine/threonine kinase activity
MAP kinase kinase activity
identical protein binding
Componente celular citosol
envelope nuclear
focal adhesion
mitocôndria
citoesqueleto
núcleo celular
late endosome
complexo de Golgi
early endosome
pseudópode
cariolinfa
citoplasma
membrana plasmática
caveola
membrane
GO:0009327 complexo macromolecular
Processo biológico caveolin-mediated endocytosis
positive regulation of protein phosphorylation
positive regulation of telomere capping
response to exogenous dsRNA
cardiac neural crest cell development involved in heart development
positive regulation of xenophagy
positive regulation of translation
cellular response to DNA damage stimulus
platelet activation
Fc-epsilon receptor signaling pathway
protein phosphorylation
cellular response to mechanical stimulus
face development
GO:0033129 positive regulation of histone modification
regulation of DNA-binding transcription factor activity
DNA damage induced protein phosphorylation
positive regulation of ERK1 and ERK2 cascade
animal organ morphogenesis
ciclo celular
GO:0097285 apoptose
Fc-gamma receptor signaling pathway involved in phagocytosis
thymus development
ERK1 and ERK2 cascade
negative regulation of apolipoprotein binding
transcription, DNA-templated
cartilage development
GO:0022415 viral process
response to toxic substance
regulation of stress-activated MAPK cascade
fosforilação
outer ear morphogenesis
BMP signaling pathway
response to lipopolysaccharide
thyroid gland development
response to epidermal growth factor
positive regulation of MAP kinase activity
positive regulation of telomerase activity
peptidyl-tyrosine autophosphorylation
nocicepção
positive regulation of cyclase activity
trachea formation
lipopolysaccharide-mediated signaling pathway
GO:0007243 intracellular signal transduction
lung morphogenesis
neural crest cell development
transcription initiation from RNA polymerase I promoter
regulation of early endosome to late endosome transport
positive regulation of telomere maintenance via telomerase
MAPK cascade
positive regulation of histone acetylation
Guia do axônio
interleukin-1-mediated signaling pathway
fibroblast growth factor receptor signaling pathway
GO:0035404 peptidyl-serine phosphorylation
regulation of cellular response to heat
Bergmann glial cell differentiation
regulation of Golgi inheritance
arachidonic acid metabolic process
regulation of cytoskeleton organization
GO:0003257, GO:0010735, GO:1901228, GO:1900622, GO:1904488 positive regulation of transcription by RNA polymerase II
regulation of phosphatidylinositol 3-kinase signaling
regulation of ossification
GO:1901313 positive regulation of gene expression
positive regulation of macrophage chemotaxis
cellular response to amino acid starvation
GO:0072353 cellular response to reactive oxygen species
stress-activated MAPK cascade
cellular response to cadmium ion
cellular response to dopamine
positive regulation of metallopeptidase activity
regulation of cellular pH
GO:0034622 protein-containing complex assembly
cellular response to tumor necrosis factor
regulação genética
cellular response to organic substance
GO:0010260 envelhecimento
decidualization
Sources:Amigo / QuickGO
Padrão de expressão RNA
Mais dados de referência de expressão
Ortólogos
EspécieHumanoRato
Entrez

5595

n/a

Ensembl

ENSG00000102882

n/a

UniProt

P27361

n/a

RefSeq (mRNA)

NM_001040056
NM_001109891
NM_002746

n/a

RefSeq (proteína)

NP_001035145
NP_001103361
NP_002737

n/a

Localização (UCSC)n/an/a
Pesquisa PubMed[2]n/a
Wikidata
Ver/Editar Humano

ERT2, também conhecida como p44MAPK, MAPK3 e ERK1, é uma enzima que em humanos é codificada pelo gene MAPK3.[3]

Ela é um membro da superfamília de proteína quinase, família de proteína cinase CMGC Ser/Thr, subfamília de MAP quinase. ERT2 é um apelido para o gene, proteína quinase 3 (ativada por mitógeno), em seres humanos.[4][5] Os pesquisadores fundiram a enzima a ERT2, em seguida ativaram o complexo com um análogo de tamoxifeno, 4-hidroxitamoxifeno, no caso de Cas9, a fim de colocar os controles no sistema CRISPR/Cas9.[6].

Interações

MAPK3 demonstrou interagir com:

  • DUSP3,[7]
  • DUSP6[8]
  • GTF2I,[9]
  • HDAC4,[10]
  • MAP2K1,[11][12][13][14][15]
  • MAP2K2,[11][12][15]
  • PTPN7,[16][17][18]
  • RPS6KA2,[19][20] and
  • SPIB.[21]

Leitura adicional

  • Peruzzi F, Gordon J, Darbinian N, Amini S (2002). «Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway». J. Neurovirol. 8 Suppl 2 (2): 91–6. PMID 12491158. doi:10.1080/13550280290167885 
  • Meloche S, Pouysségur J (2007). «The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition». Oncogene. 26 (22): 3227–39. PMID 17496918. doi:10.1038/sj.onc.1210414 
  • Ruscica M, Dozio E, Motta M, Magni P (2007), «Modulatory Actions of Neuropeptide y on Prostate Cancer Growth: Role of MAP Kinase/ERK 1/2 Activatio», Modulatory actions of neuropeptide Y on prostate cancer growth: role of MAP kinase/ERK 1/2 activation, ISBN 978-0-387-69114-5, Advances In Experimental Medicine And Biology, 604, pp. 96–100, PMID 17695723, doi:10.1007/978-0-387-69116-9_7 

Referências

  1. «Drogas que interagem fisicamente com mitogen-activated protein kinase 3 ver/editar referências no wikidata» 
  2. «Human PubMed Reference:» 
  3. Garcı́a, F.; Zalba, G.; Páez, G.; Encı́o, I.; de Miguel, C. (15 de maio de 1998). «Molecular Cloning and Characterization of the Human p44 Mitogen-Activated Protein Kinase Gene». Genomics (em inglês) (1): 69–78. ISSN 0888-7543. doi:10.1006/geno.1998.5315. Consultado em 30 de junho de 2021 
  4. Anti-ERT2 Antibody Products from Bio-Rad Antibodies publicado por "Biocompare"
  5. From Gene Targeting to Genome Editing: Transgenic animals applications and beyond por Mauricio Rocha-Martins et al, publicado pela An. Acad. Bras. Ciênc. vol.87 no.2 supl.0 Rio de Janeiro Aug. 2015 ISSN 1678-2690
  6. Toggling CRISPR Activity with a Chemical Switch Researchers design a Cas9 enzyme that cuts DNA only in the presence of particular drug. por Kerry Grens (2016)
  7. Todd JL, Tanner KG, Denu JM (maio de 1999). «Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway». J. Biol. Chem. 274 (19): 13271–80. PMID 10224087. doi:10.1074/jbc.274.19.13271 
  8. Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M, Boschert U, Rodrigues N, Davies K, Ashworth A, Arkinstall S (abril de 1998). «The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity». J. Biol. Chem. 273 (15): 9323–9. PMID 9535927. doi:10.1074/jbc.273.15.9323 
  9. Kim DW, Cochran BH (fevereiro de 2000). «Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter». Mol. Cell. Biol. 20 (4): 1140–8. PMC 85232Acessível livremente. PMID 10648599. doi:10.1128/mcb.20.4.1140-1148.2000 
  10. Zhou X, Richon VM, Wang AH, Yang XJ, Rifkind RA, Marks PA (dezembro de 2000). «Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras». Proc. Natl. Acad. Sci. U.S.A. 97 (26): 14329–33. PMC 18918Acessível livremente. PMID 11114188. doi:10.1073/pnas.250494697 
  11. a b Marti A, Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel TP, Kyriakis JM, Avruch J (janeiro de 1997). «Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells». J. Biol. Chem. 272 (5): 2620–8. PMID 9006895. doi:10.1074/jbc.272.5.2620 
  12. a b Butch ER, Guan KL (fevereiro de 1996). «Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2». J. Biol. Chem. 271 (8): 4230–5. PMID 8626767. doi:10.1074/jbc.271.8.4230 
  13. Elion EA (setembro de 1998). «Routing MAP kinase cascades». Science. 281 (5383): 1625–6. PMID 9767029. doi:10.1126/science.281.5383.1625 
  14. Yung Y, Yao Z, Hanoch T, Seger R (maio de 2000). «ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK». J. Biol. Chem. 275 (21): 15799–808. PMID 10748187. doi:10.1074/jbc.M910060199 
  15. a b Zheng CF, Guan KL (novembro de 1993). «Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases». J. Biol. Chem. 268 (32): 23933–9. PMID 8226933 
  16. Pettiford SM, Herbst R (fevereiro de 2000). «The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP». Oncogene. 19 (7): 858–69. PMID 10702794. doi:10.1038/sj.onc.1203408 
  17. Saxena M, Williams S, Taskén K, Mustelin T (setembro de 1999). «Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase». Nat. Cell Biol. 1 (5): 305–11. PMID 10559944. doi:10.1038/13024 
  18. Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (abril de 1999). «Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)». J. Biol. Chem. 274 (17): 11693–700. PMID 10206983. doi:10.1074/jbc.274.17.11693 
  19. Roux PP, Richards SA, Blenis J (julho de 2003). «Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity». Mol. Cell. Biol. 23 (14): 4796–804. PMC 162206Acessível livremente. PMID 12832467. doi:10.1128/mcb.23.14.4796-4804.2003 
  20. Zhao Y, Bjorbaek C, Moller DE (novembro de 1996). «Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases». J. Biol. Chem. 271 (47): 29773–9. PMID 8939914. doi:10.1074/jbc.271.47.29773 
  21. Mao C, Ray-Gallet D, Tavitian A, Moreau-Gachelin F (fevereiro de 1996). «Differential phosphorylations of Spi-B and Spi-1 transcription factors». Oncogene. 12 (4): 863–73. PMID 8632909 

Ligações externas

  • localização do gene humano no navegador do genoma da UCSC.
  • detalhes do gene humano no navegador do genoma da UCSC.
  • Portal da genética
  • Portal da bioquímica
  • v
  • d
  • e
Autossomas
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 · 16 · 17 · 18 · 19 · 20 · 21 · 22
Cromossomas sexuais
· Y
Tópicos relacionados