Mandelbulb

Three-dimensional fractal
A 4K UHD 3D Mandelbulb video
A ray-marched image of the 3D Mandelbulb for the iteration vv8 + c

The Mandelbulb is a three-dimensional fractal, constructed for the first time in 1997 by Jules Ruis and in 2009 further developed by Daniel White and Paul Nylander using spherical coordinates.

A canonical 3-dimensional Mandelbrot set does not exist, since there is no 3-dimensional analogue of the 2-dimensional space of complex numbers. It is possible to construct Mandelbrot sets in 4 dimensions using quaternions and bicomplex numbers.

White and Nylander's formula for the "nth power" of the vector v = x , y , z {\displaystyle \mathbf {v} =\langle x,y,z\rangle } in 3 is

v n := r n sin ( n θ ) cos ( n ϕ ) , sin ( n θ ) sin ( n ϕ ) , cos ( n θ ) , {\displaystyle \mathbf {v} ^{n}:=r^{n}\langle \sin(n\theta )\cos(n\phi ),\sin(n\theta )\sin(n\phi ),\cos(n\theta )\rangle ,}

where

r = x 2 + y 2 + z 2 , {\displaystyle r={\sqrt {x^{2}+y^{2}+z^{2}}},}
ϕ = arctan y x = arg ( x + y i ) , {\displaystyle \phi =\arctan {\frac {y}{x}}=\arg(x+yi),}
θ = arctan x 2 + y 2 z = arccos z r . {\displaystyle \theta =\arctan {\frac {\sqrt {x^{2}+y^{2}}}{z}}=\arccos {\frac {z}{r}}.}

The Mandelbulb is then defined as the set of those c {\displaystyle \mathbf {c} } in 3 for which the orbit of 0 , 0 , 0 {\displaystyle \langle 0,0,0\rangle } under the iteration v v n + c {\displaystyle \mathbf {v} \mapsto \mathbf {v} ^{n}+\mathbf {c} } is bounded.[1] For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form:

x , y , z 3 = ( 3 z 2 x 2 y 2 ) x ( x 2 3 y 2 ) x 2 + y 2 , ( 3 z 2 x 2 y 2 ) y ( 3 x 2 y 2 ) x 2 + y 2 , z ( z 2 3 x 2 3 y 2 ) . {\displaystyle \langle x,y,z\rangle ^{3}=\left\langle {\frac {(3z^{2}-x^{2}-y^{2})x(x^{2}-3y^{2})}{x^{2}+y^{2}}},{\frac {(3z^{2}-x^{2}-y^{2})y(3x^{2}-y^{2})}{x^{2}+y^{2}}},z(z^{2}-3x^{2}-3y^{2})\right\rangle .}

The Mandelbulb given by the formula above is actually one in a family of fractals given by parameters (pq) given by

v n := r n sin ( p θ ) cos ( q ϕ ) , sin ( p θ ) sin ( q ϕ ) , cos ( p θ ) . {\displaystyle \mathbf {v} ^{n}:=r^{n}\langle \sin(p\theta )\cos(q\phi ),\sin(p\theta )\sin(q\phi ),\cos(p\theta )\rangle .}

Since p and q do not necessarily have to equal n for the identity |vn| = |v|n to hold, more general fractals can be found by setting

v n := r n sin ( f ( θ , ϕ ) ) cos ( g ( θ , ϕ ) ) , sin ( f ( θ , ϕ ) ) sin ( g ( θ , ϕ ) ) , cos ( f ( θ , ϕ ) ) {\displaystyle \mathbf {v} ^{n}:=r^{n}{\big \langle }\sin {\big (}f(\theta ,\phi ){\big )}\cos {\big (}g(\theta ,\phi ){\big )},\sin {\big (}f(\theta ,\phi ){\big )}\sin {\big (}g(\theta ,\phi ){\big )},\cos {\big (}f(\theta ,\phi ){\big )}{\big \rangle }}

for functions f and g.

Cubic formula

Cubic fractal

Other formulae come from identities parametrising the sum of squares to give a power of the sum of squares, such as

( x 3 3 x y 2 3 x z 2 ) 2 + ( y 3 3 y x 2 + y z 2 ) 2 + ( z 3 3 z x 2 + z y 2 ) 2 = ( x 2 + y 2 + z 2 ) 3 , {\displaystyle (x^{3}-3xy^{2}-3xz^{2})^{2}+(y^{3}-3yx^{2}+yz^{2})^{2}+(z^{3}-3zx^{2}+zy^{2})^{2}=(x^{2}+y^{2}+z^{2})^{3},}

which we can think of as a way to cube a triplet of numbers so that the modulus is cubed. So this gives, for example,

x x 3 3 x ( y 2 + z 2 ) + x 0 {\displaystyle x\to x^{3}-3x(y^{2}+z^{2})+x_{0}}
y y 3 + 3 y x 2 y z 2 + y 0 {\displaystyle y\to -y^{3}+3yx^{2}-yz^{2}+y_{0}}
z z 3 3 z x 2 + z y 2 + z 0 {\displaystyle z\to z^{3}-3zx^{2}+zy^{2}+z_{0}}

or other permutations.

This reduces to the complex fractal w w 3 + w 0 {\displaystyle w\to w^{3}+w_{0}} when z = 0 and w w ¯ 3 + w 0 {\displaystyle w\to {\overline {w}}^{3}+w_{0}} when y = 0.

There are several ways to combine two such "cubic" transforms to get a power-9 transform, which has slightly more structure.

Quintic formula

Quintic Mandelbulb
Quintic Mandelbulb with C = 2

Another way to create Mandelbulbs with cubic symmetry is by taking the complex iteration formula z z 4 m + 1 + z 0 {\displaystyle z\to z^{4m+1}+z_{0}} for some integer m and adding terms to make it symmetrical in 3 dimensions but keeping the cross-sections to be the same 2-dimensional fractal. (The 4 comes from the fact that i 4 = 1 {\displaystyle i^{4}=1} .) For example, take the case of z z 5 + z 0 {\displaystyle z\to z^{5}+z_{0}} . In two dimensions, where z = x + i y {\displaystyle z=x+iy} , this is

x x 5 10 x 3 y 2 + 5 x y 4 + x 0 , {\displaystyle x\to x^{5}-10x^{3}y^{2}+5xy^{4}+x_{0},}
y y 5 10 y 3 x 2 + 5 y x 4 + y 0 . {\displaystyle y\to y^{5}-10y^{3}x^{2}+5yx^{4}+y_{0}.}

This can be then extended to three dimensions to give

x x 5 10 x 3 ( y 2 + A y z + z 2 ) + 5 x ( y 4 + B y 3 z + C y 2 z 2 + B y z 3 + z 4 ) + D x 2 y z ( y + z ) + x 0 , {\displaystyle x\to x^{5}-10x^{3}(y^{2}+Ayz+z^{2})+5x(y^{4}+By^{3}z+Cy^{2}z^{2}+Byz^{3}+z^{4})+Dx^{2}yz(y+z)+x_{0},}
y y 5 10 y 3 ( z 2 + A x z + x 2 ) + 5 y ( z 4 + B z 3 x + C z 2 x 2 + B z x 3 + x 4 ) + D y 2 z x ( z + x ) + y 0 , {\displaystyle y\to y^{5}-10y^{3}(z^{2}+Axz+x^{2})+5y(z^{4}+Bz^{3}x+Cz^{2}x^{2}+Bzx^{3}+x^{4})+Dy^{2}zx(z+x)+y_{0},}
z z 5 10 z 3 ( x 2 + A x y + y 2 ) + 5 z ( x 4 + B x 3 y + C x 2 y 2 + B x y 3 + y 4 ) + D z 2 x y ( x + y ) + z 0 {\displaystyle z\to z^{5}-10z^{3}(x^{2}+Axy+y^{2})+5z(x^{4}+Bx^{3}y+Cx^{2}y^{2}+Bxy^{3}+y^{4})+Dz^{2}xy(x+y)+z_{0}}

for arbitrary constants A, B, C and D, which give different Mandelbulbs (usually set to 0). The case z z 9 {\displaystyle z\to z^{9}} gives a Mandelbulb most similar to the first example, where n = 9. A more pleasing result for the fifth power is obtained by basing it on the formula z z 5 + z 0 {\displaystyle z\to -z^{5}+z_{0}} .

Fractal based on z → −z5

Power-nine formula

Fractal with z9 Mandelbrot cross-sections

This fractal has cross-sections of the power-9 Mandelbrot fractal. It has 32 small bulbs sprouting from the main sphere. It is defined by, for example,

x x 9 36 x 7 ( y 2 + z 2 ) + 126 x 5 ( y 2 + z 2 ) 2 84 x 3 ( y 2 + z 2 ) 3 + 9 x ( y 2 + z 2 ) 4 + x 0 , {\displaystyle x\to x^{9}-36x^{7}(y^{2}+z^{2})+126x^{5}(y^{2}+z^{2})^{2}-84x^{3}(y^{2}+z^{2})^{3}+9x(y^{2}+z^{2})^{4}+x_{0},}
y y 9 36 y 7 ( z 2 + x 2 ) + 126 y 5 ( z 2 + x 2 ) 2 84 y 3 ( z 2 + x 2 ) 3 + 9 y ( z 2 + x 2 ) 4 + y 0 , {\displaystyle y\to y^{9}-36y^{7}(z^{2}+x^{2})+126y^{5}(z^{2}+x^{2})^{2}-84y^{3}(z^{2}+x^{2})^{3}+9y(z^{2}+x^{2})^{4}+y_{0},}
z z 9 36 z 7 ( x 2 + y 2 ) + 126 z 5 ( x 2 + y 2 ) 2 84 z 3 ( x 2 + y 2 ) 3 + 9 z ( x 2 + y 2 ) 4 + z 0 . {\displaystyle z\to z^{9}-36z^{7}(x^{2}+y^{2})+126z^{5}(x^{2}+y^{2})^{2}-84z^{3}(x^{2}+y^{2})^{3}+9z(x^{2}+y^{2})^{4}+z_{0}.}

These formula can be written in a shorter way:

x 1 2 ( x + i y 2 + z 2 ) 9 + 1 2 ( x i y 2 + z 2 ) 9 + x 0 {\displaystyle x\to {\frac {1}{2}}\left(x+i{\sqrt {y^{2}+z^{2}}}\right)^{9}+{\frac {1}{2}}\left(x-i{\sqrt {y^{2}+z^{2}}}\right)^{9}+x_{0}}

and equivalently for the other coordinates.

Power-nine fractal detail

Spherical formula

A perfect spherical formula can be defined as a formula

( x , y , z ) ( f ( x , y , z ) + x 0 , g ( x , y , z ) + y 0 , h ( x , y , z ) + z 0 ) , {\displaystyle (x,y,z)\to {\big (}f(x,y,z)+x_{0},g(x,y,z)+y_{0},h(x,y,z)+z_{0}{\big )},}

where

( x 2 + y 2 + z 2 ) n = f ( x , y , z ) 2 + g ( x , y , z ) 2 + h ( x , y , z ) 2 , {\displaystyle (x^{2}+y^{2}+z^{2})^{n}=f(x,y,z)^{2}+g(x,y,z)^{2}+h(x,y,z)^{2},}

where f, g and h are nth-power rational trinomials and n is an integer. The cubic fractal above is an example.

Uses in media

  • In the 2014 animated film Big Hero 6, the climax takes place in the middle of a wormhole, which is represented by the stylized interior of a Mandelbulb.[2][3]
  • In the 2018 science fiction horror film Annihilation, an extraterrestrial being appears in the form of a partial Mandelbulb.[4]
  • In the webcomic Unsounded the spirit realm of the khert is represented by a stylized golden mandelbulb.

See also

References

  1. ^ "Mandelbulb: The Unravelling of the Real 3D Mandelbrot Fractal". see "formula" section.
  2. ^ Desowitz, Bill (January 30, 2015). "Immersed in Movies: Going Into the 'Big Hero 6' Portal". Animation Scoop. Indiewire. Archived from the original on May 3, 2015. Retrieved May 3, 2015.
  3. ^ Hutchins, David; Riley, Olun; Erickson, Jesse; Stomakhin, Alexey; Habel, Ralf; Kaschalk, Michael (2015). "Big Hero 6: Into the portal". ACM SIGGRAPH 2015 Talks. SIGGRAPH '15. New York, NY, USA: ACM. pp. 52:1. doi:10.1145/2775280.2792521. ISBN 9781450336369. S2CID 7488766.
  4. ^ Gaudette, Emily (February 26, 2018). "What Is Area X and the Shimmer in 'Annihilation'? VFX Supervisor Explains the Horror Film's Mathematical Solution". Newsweek. Retrieved March 9, 2018.

6. http://www.fractal.org the Fractal Navigator by Jules Ruis

External links

Wikimedia Commons has media related to Mandelbulb.
  • for the first use of the Mandelbulb formula on www.fractal.org website Jules Ruis
  • Mandelbulb: The Unravelling of the Real 3D Mandelbrot Fractal, on Daniel White's website
  • Several variants of the Mandelbulb, on Paul Nylander's website
  • An opensource fractal renderer that can be used to create images of the Mandelbulb
  • Formula for Mandelbulb/Juliabulb/Juliusbulb by Jules Ruis
  • Mandelbulb/Juliabulb/Juliusbulb with examples of real 3D objects
  • Video : View of the Mandelbulb
  • Video : Exploring Mandelbulb. 3D Fractal Animation
  • The discussion thread in Fractalforums.com that led to the Mandelbulb
  • Video fly through of an animated Mandelbulb world
  • Open-source Mandelbulber v2 software - Explore trigonometric, hyper-complex, Mandelbox, IFS, and many other 3D fractals.
  • v
  • t
  • e
Fractals
CharacteristicsIterated function
systemStrange attractorL-systemEscape-time
fractalsRendering techniquesRandom fractalsPeopleOther
  • v
  • t
  • e
Open-source
GNU
Freeware
Retail
Cross-platform
Windows only
Scenery generator
Found objects
Related
  • Category
  • v
  • t
  • e
Concepts
Fibonacci word: detail of artwork by Samuel Monnier, 2009
Forms
Artworks
Buildings
Artists
Renaissance
19th–20th
Century
Contemporary
Theorists
Ancient
Renaissance
Romantic
Modern
Publications
Organizations
Related
  • Category