ATP5F1

Protein-coding gene in the species Homo sapiens
ATP5PB
Identifiers
AliasesATP5PB, PIG47, ATP synthase, H+ transporting, mitochondrial Fo complex subunit B1, ATP synthase peripheral stalk-membrane subunit b, ATP5F1
External IDsOMIM: 603270 MGI: 1100495 HomoloGene: 1275 GeneCards: ATP5PB
Gene location (Human)
Chromosome 1 (human)
Chr.Chromosome 1 (human)[1]
Chromosome 1 (human)
Genomic location for ATP5PB
Genomic location for ATP5PB
Band1p13.2Start111,448,864 bp[1]
End111,462,773 bp[1]
Gene location (Mouse)
Chromosome 3 (mouse)
Chr.Chromosome 3 (mouse)[2]
Chromosome 3 (mouse)
Genomic location for ATP5PB
Genomic location for ATP5PB
Band3 F2.2|3 46.46 cMStart105,850,014 bp[2]
End105,867,415 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • right ventricle

  • palpebral conjunctiva

  • biceps brachii

  • jejunal mucosa

  • germinal epithelium

  • oral cavity

  • kidney tubule

  • tibia

  • parietal pleura

  • body of tongue
Top expressed in
  • myocardium of ventricle

  • intercostal muscle

  • soleus muscle

  • atrioventricular valve

  • medial ganglionic eminence

  • vas deferens

  • atrium

  • digastric muscle

  • endocardial cushion

  • quadriceps femoris muscle
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • protein binding
  • ATPase activity
  • proton transmembrane transporter activity
  • proton-transporting ATP synthase activity, rotational mechanism
  • transmembrane transporter activity
Cellular component
  • nucleoplasm
  • mitochondrion
  • mitochondrial proton-transporting ATP synthase complex, coupling factor F(o)
  • mitochondrial matrix
  • proton-transporting ATP synthase complex, coupling factor F(o)
  • nucleus
  • membrane
  • myelin sheath
  • mitochondrial proton-transporting ATP synthase complex
  • mitochondrial inner membrane
  • extracellular exosome
Biological process
  • substantia nigra development
  • ion transport
  • ATP synthesis coupled proton transport
  • mitochondrial ATP synthesis coupled proton transport
  • ATP biosynthetic process
  • cristae formation
  • transport
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

515

11950

Ensembl

ENSG00000116459

ENSMUSG00000000563

UniProt

P24539

Q9CQQ7

RefSeq (mRNA)

NM_001688
NM_001002014
NM_001002015

NM_009725
NM_001304719

RefSeq (protein)

NP_001679

NP_001291648
NP_033855

Location (UCSC)Chr 1: 111.45 – 111.46 MbChr 3: 105.85 – 105.87 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
ATP-synt_B
atp synthase b subunit dimerization domain
Identifiers
SymbolATP-synt_B
PfamPF00430
Pfam clanCL0255
InterProIPR002146
SCOP21b9u / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

ATP synthase subunit b, mitochondrial is an enzyme that in humans is encoded by the ATP5PB gene.[5][6]

This gene encodes a subunit of mitochondrial ATP synthase. Mitochondrial ATP synthase catalyzes ATP synthesis, utilizing an electrochemical gradient of protons across the inner membrane during oxidative phosphorylation. ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F1, and the membrane-spanning component, Fo, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta, and a single representative of the other 3. The proton channel seems to have nine subunits (a, b, c, d, e, f, g, F6 and 8). This gene encodes the b subunit of the proton channel.[6]

The b subunits are part of the peripheral stalk that links the F1 and FO complexes together, and which acts as a stator to prevent certain subunits from rotating with the central rotary element. The peripheral stalk differs in subunit composition between mitochondrial, chloroplast and bacterial F-ATPases. In bacterial and chloroplast F-ATPases, the peripheral stalk is composed of one copy of the delta subunit (homologous to OSCP in mitochondria), and two copies of subunit b in bacteria, or one copy each of subunits b and b' in chloroplasts and photosynthetic bacteria.[7]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000116459 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000000563 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Higuti T, Tsurumi C, Osaka F, Kawamura Y, Tsujita H, Yoshihara Y, et al. (Sep 1991). "Molecular cloning of cDNA for the import precursor of human subunit B of H(+)-ATP synthase in mitochondria". Biochem Biophys Res Commun. 178 (3): 1014–20. doi:10.1016/0006-291X(91)90993-H. PMID 1831354.
  6. ^ a b "Entrez Gene: ATP5PB ATP synthase peripheral stalk-membrane subunit b".
  7. ^ Carbajo RJ, Kellas FA, Runswick MJ, Montgomery MG, Walker JE, Neuhaus D (August 2005). "Structure of the F1-binding domain of the stator of bovine F1Fo-ATPase and how it binds an alpha-subunit". J. Mol. Biol. 351 (4): 824–38. doi:10.1016/j.jmb.2005.06.012. PMID 16045926.

External links

Further reading

  • Gay NJ, Walker JE (1986). "Two genes encoding the bovine mitochondrial ATP synthase proteolipid specify precursors with different import sequences and are expressed in a tissue-specific manner". EMBO J. 4 (13A): 3519–24. doi:10.1002/j.1460-2075.1985.tb04111.x. PMC 554691. PMID 2868890.
  • Farrell LB, Nagley P (1987). "Human liver cDNA clones encoding proteolipid subunit 9 of the mitochondrial ATPase complex". Biochem. Biophys. Res. Commun. 144 (3): 1257–64. doi:10.1016/0006-291X(87)91446-X. PMID 2883974.
  • Houstĕk J, Andersson U, Tvrdík P, Nedergaard J, Cannon B (1995). "The expression of subunit c correlates with and thus may limit the biosynthesis of the mitochondrial F0F1-ATPase in brown adipose tissue". J. Biol. Chem. 270 (13): 7689–94. doi:10.1074/jbc.270.13.7689. PMID 7706317.
  • Maruyama K, Sugano S (1994). "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides". Gene. 138 (1–2): 171–4. doi:10.1016/0378-1119(94)90802-8. PMID 8125298.
  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, Suyama A, Sugano S (1997). "Construction and characterization of a full length-enriched and a 5'-end-enriched cDNA library". Gene. 200 (1–2): 149–56. doi:10.1016/S0378-1119(97)00411-3. PMID 9373149.
  • Elston T, Wang H, Oster G (1998). "Energy transduction in ATP synthase". Nature. 391 (6666): 510–3. Bibcode:1998Natur.391..510E. doi:10.1038/35185. PMID 9461222. S2CID 4406161.
  • Wang H, Oster G (1998). "Energy transduction in the F1 motor of ATP synthase". Nature. 396 (6708): 279–82. Bibcode:1998Natur.396..279W. doi:10.1038/24409. PMID 9834036. S2CID 4424498.
  • Jia L, Young MF, Powell J, Yang L, Ho NC, Hotchkiss R, et al. (2002). "Gene expression profile of human bone marrow stromal cells: high-throughput expressed sequence tag sequencing analysis". Genomics. 79 (1): 7–17. doi:10.1006/geno.2001.6683. PMID 11827452.
  • Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. Bibcode:2002PNAS...9916899M. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Cross RL (2004). "Molecular motors: turning the ATP motor". Nature. 427 (6973): 407–8. Bibcode:2004Natur.427..407C. doi:10.1038/427407b. PMID 14749816. S2CID 52819856.
  • Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
  • Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al. (2006). "The DNA sequence and biological annotation of human chromosome 1". Nature. 441 (7091): 315–21. Bibcode:2006Natur.441..315G. doi:10.1038/nature04727. PMID 16710414.
  • Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, et al. (2007). "Large-scale mapping of human protein–protein interactions by mass spectrometry". Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.


This article incorporates text from the public domain Pfam and InterPro: IPR002146